Finite elements on degenerate meshes: inverse-type inequalities and applications
نویسنده
چکیده
In this paper we obtain a range of inverse-type inequalities which are applicable to finite element functions on general classes of meshes, including degenerate meshes obtained by anisotropic refinement. These are obtained for Sobolev norms of positive, zero and negative order. In contrast to classical inverse estimates, negative powers of the minimum mesh diameter are avoided. We give two applications of these estimates in the context of boundary elements: (i) to the analysis of quadrature error in discrete Galerkin methods and (ii) to the analysis of the panel clustering algorithm. Our results show that degeneracy in the meshes yields no degradation in the approximation properties of these methods.
منابع مشابه
On the finite element method for elliptic problems with degenerate and singular coefficients
We consider Dirichlet boundary value problems for second order elliptic equations over polygonal domains. The coefficients of the equations under consideration degenerate at an inner point of the domain, or behave singularly in the neighborhood of that point. This behavior may cause singularities in the solution. The solvability of the problems is proved in weighted Sobolev spaces, and their ap...
متن کاملInverse inequalities on non-quasi-uniform meshes and application to the mortar element method
We present a range of mesh-dependent inequalities for piecewise constant and continuous piecewise linear finite element functions u defined on locally refined shape-regular (but possibly nonquasi-uniform) meshes. These inequalities involve norms of the form �h � u� W s,p (Ω) for positive and negative s and �, where h is a function which reflects the local mesh diameter in an appropriate way. Th...
متن کاملTorsion Analysis of High-Rise Buildings using Quadrilateral Panel Elements with Drilling D.O.F.s
Generally, the finite element method is a powerful procedure for analysis of tall buildings. Yet, it should be noted that there are some problems in the application of many finite elements to the analysis of tall building structures. The presence of artificial flexure and parasitic shear effects in many lower order plane stress and membrane elements, cause the numerical procedure to converge in...
متن کاملInverse-type estimates on hp-finite element spaces and applications
This work is concerned with the development of inverse-type inequalities for piecewise polynomial functions and, in particular, functions belonging to hp-finite element spaces. The cases of positive and negative Sobolev norms are considered for both continuous and discontinuous finite element functions.The inequalities are explicit both in the local polynomial degree and the local mesh size.The...
متن کاملMathematical Modeling and Analysis Mimetic Finite Differences for Modeling Stokes Flow on Polygonal Meshes
Stokes flow is fluid flow where advective inertial forces are negligibly small compared to viscous forces. This is a typical situation on a microscale or when the fluid velocity is very small. Stokes flow is a good and important approximation for a number of physical problems such as sedimentation, modeling of biosuspensions, construction of efficient fibrous filters, developing energy efficien...
متن کامل